Open Access Article
International Journal of Mechanical Engineering. 2025; 4: (3) ; 38-41 ; DOI: 10.12208/j.ijme.20250065.
Consider the tiered management strategy of spare parts inventory based on the health status of mechanical equipment
考虑机械设备健康状态的备件库存分级管理策略
作者:
苏辉 *
芜湖中电环保发电有限公司 安徽芜湖
*通讯作者:
苏辉,单位:芜湖中电环保发电有限公司 安徽芜湖;
发布时间: 2025-06-22 总浏览量: 91
PDF 全文下载
引用本文
摘要
随着机械设备运行时间的增加,设备故障的概率上升,备件库存管理的复杂性也随之增加。传统的备件库存管理方法往往忽视了设备健康状态的变化,导致备件积压或短缺,影响生产效率。为了提高库存管理的精度和响应速度,提出了一种基于设备健康状态的备件库存分级管理策略。该策略结合设备的健康状态监测数据,将备件分为不同等级,针对不同等级的备件进行差异化管理,优化库存量和采购策略。通过此策略,可以实现对设备备件的精准管理,降低库存成本,确保设备维修的及时性,从而提升企业的生产效率和资源利用率。
关键词: 机械设备;健康状态;备件库存;分级管理;库存优化
Abstract
As the operational time of mechanical equipment increases, the probability of equipment failures rises, and the complexity of spare parts inventory management also grows. Traditional methods of spare parts inventory management often overlook changes in equipment health status, leading to stockpiling or shortages that affect production efficiency. To improve the accuracy and responsiveness of inventory management, this study proposes a tiered management strategy for spare parts inventory based on equipment health status. By integrating health status monitoring data, the strategy categorizes spare parts into different levels and implements differentiated management strategies for each category, optimizing inventory levels and procurement tactics. This approach enables precise management of equipment spare parts, reduces inventory costs, ensures timely equipment maintenance, thereby enhancing corporate production efficiency and resource utilization.
Key words: Mechanical equipment; Health status; Spare parts inventory; Tiered management; Inventory optimization
参考文献 References
[1] 王水林,孟凡平.故障检测诊断技术在大功率机械设备管理中的应用[J].产业创新研究,2024,(20):136-138.
[2] 张明.港口大型装卸机械设备运行状态智能监测分析[J].运输经理世界,2024,(27):133-135.
[3] 韩小慧.机械设备监测与故障诊断方法及其发展趋势[J].黑龙江科学,2024,15(14):101-104.
[4] 陈帅,马洪文,党利国.机械设备状态监测与预知维修策略研究[J].造纸装备及材料,2024,53(06):48-51.
[5] 刘荣佳.机械设备管理中机械设备维修的重要性[J].模具制造,2023,23(12):258-260.
[6] 王楠.浅谈机械设备故障诊断与监测的常用方法及其发展趋势[J].中国设备工程,2024,(01):159-161.
[7] 刘小航,孔德润,曾志生.基于监测技术的化工机械设备完好性管理[J].劳动保护,2023,(09):81-83.
[8] 沈锋.基于机器视觉的机械设备运行状态监测与故障预警研究[J].造纸装备及材料,2023,52(05):28-30.
引用本文
苏辉, 考虑机械设备健康状态的备件库存分级管理策略[J]. 国际机械工程, 2025; 4: (3) : 38-41.