摘要
主汽机振动异常诊断是保障电力系统稳定运行的关键技术之一。为了有效识别主汽机在运行过程中的振动异常并提高诊断准确性,本文提出了一种基于多源信号融合的诊断技术。通过结合振动信号、温度信号以及压力信号,采用信号处理与融合算法,能够提高异常诊断的鲁棒性和精度。本文研究了多种信号融合方法的优缺点,分析了各类信号在诊断过程中的互补性,提出了一种新的多源信号融合方法。实验结果表明,该方法能够准确识别主汽机的振动异常,为电力设备的维护和故障预防提供了有效支持。
关键词: 主汽机;振动异常;多源信号;信号融合;故障诊断
Abstract
Diagnosing abnormal vibration in main steam turbines is one of the key technologies for ensuring the stable operation of power systems. To effectively identify vibration abnormalities during operation and improve diagnostic accuracy, this paper proposes a diagnosis technique based on multi-source signal fusion. By integrating vibration signals, temperature signals, and pressure signals, and employing signal processing and fusion algorithms, the robustness and accuracy of anomaly diagnosis can be enhanced. This paper investigates the advantages and disadvantages of various signal fusion methods, analyzes the complementarity of different signals in the diagnostic process, and proposes a novel multi-source signal fusion approach. Experimental results demonstrate that the proposed method can accurately identify abnormal vibrations in main steam turbines, providing effective support for the maintenance and fault prevention of power equipment.
Key words: Main steam turbine; Abnormal vibration; Multi-source signal; Signal fusion; Fault diagnosis
参考文献 References
[1] 程嘉其,李毅,周康伟,等. 平衡盘式多级离心给水泵振动异常正向推理故障诊断[J].水泵技术,2025,(04):51-55.
[2] 吕宾,万庆明,许庆兴,等. 循环水泵振动异常探析和解决措施[J].冶金动力,2025,(04):29-32.
[3] 王洪祥,杨刚,何继全,等. 某水轮发电机组振动异常原因分析及处理[J].水电站机电技术,2025,48(08):20-24.
[4] 尚晓伟. 汽机基座转运层施工技术与难点分析[J].广东建材,2025,41(07):145-148.
[5] 吴昌浩. 基于智能微电网技术的火力发电厂汽机设备检修方法[J].电力设备管理,2025,(12):120-122.
[6] 张元海,翟坚平,段佩怡. 水轮发电机振动异常及修复技术研究[J].水电站机电技术,2025,48(06):68-71.
[7] 叶凯,罗伟雄,王昊,等. 汽轮机振动异常波动现象分析与处理[J].设备管理与维修,2025,(08):96-100.
[8] 冯鹏飞. 某电厂低压轴封“混腔”导致汽机振动异常分析与处理[J].电力设备管理,2024,(15):93-95.