期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

International Journal of Mechanical Engineering. 2025; 4: (2) ; 11-13 ; DOI: 10.12208/j.ijme.20250022.

Adaptive grasping control of bionic arm via electromyographic signals
仿生机械臂的肌电信号自适应抓取控制

作者: 张克平 *

安徽怀宁海螺水泥有限公司 安徽安庆

*通讯作者: 张克平,单位:安徽怀宁海螺水泥有限公司 安徽安庆;

发布时间: 2025-04-25 总浏览量: 42

摘要

聚焦仿生机械臂的肌电信号自适应抓取控制研究。先阐述通过肌电传感器获取人体肌肉运动产生的微弱电信号,经滤波、放大等预处理步骤提高信号质量。接着介绍从预处理信号中提取时域、频域及时频域特征以识别肌肉运动意图的方法。然后说明基于识别结果设计控制算法,如采用自适应控制策略使机械臂能依据抓取物体的特性及环境变化实时调整控制参数,实现稳定抓取。研究旨在提升仿生机械臂抓取的准确性、灵活性与适应性,推动其在医疗康复、工业生产等多领域的广泛应用。

关键词: 仿生机械臂;肌电信号;自适应控制;抓取控制;信号处理

Abstract

This study focuses on the research of adaptive grasping control for bionic arms using electromyographic signals. The paper first explains how microelectromyographic signals generated by human muscle movements are acquired through electromyography sensors, followed by signal quality enhancement through preprocessing steps such as filtering and amplification. It then introduces methods for extracting time-domain, frequency-domain, and time-frequency domain features from the processed signals to identify muscle movement intentions. Subsequently, control algorithms are designed based on recognition results, including adaptive control strategies that enable real-time adjustment of control parameters according to object characteristics and environmental changes, achieving stable grasping. The research aims to enhance the accuracy, flexibility, and adaptability of bionic arm grasping, promoting its widespread application in medical rehabilitation, industrial production, and other fields.

Key words: Bionic arm; Electromyographic signals; Adaptive control; Grasping control; Signal processing

参考文献 References

[1] 赵明阳,谢银辉,杨进兴,等.气电混合仿生机械臂运动建模及参数辨识[J].传感器与微系统,2025,44(07):75-80.

[2] 刘九庆,刘凡,朱斌海.旋翼无人机仿生栖息机械臂设计[J].森林工程,2024,40(04):150-159.

[3] 吴琪,王志刚,杨宇,等.机械臂结构的发展与应用综述[J].航空科学技术,2024,35(05):60-73.

[4] 梁柱,陈思涛.7自由度类肌腱驱动仿生机械臂的设计研究[J].模具制造,2024,24(05):40-42+46.

[5] 王尧尧,刘卢芳,鞠锋,等.面向旋翼飞行器的仿生机械臂终端滑模控制[J].中南大学学报(自然科学版),2022, 53(02): 471-481.

[6] 罗颖杰,罗勇杰,张家伟,等.基于仿生机械臂与AI深度视觉的ROV水下机器人[J].长江信息通信,2022,35(01):19-22.

[7] 陈涛,杜福鹏.基于肌电信号控制的仿生机械手掌控制系统设计[J].南方农机,2020,51(09):20+24.

[8] 陈涛,杜福鹏.基于MYO的仿生机械臂随动控制系统设计[J].信息与电脑(理论版),2020,32(07):77-79.

引用本文

张克平, 仿生机械臂的肌电信号自适应抓取控制[J]. 国际机械工程, 2025; 4: (2) : 11-13.