摘要
机械臂示教编程在工业自动化领域广泛应用,但传统方式存在灵活性差、效率低等问题。为实现更高效智能的示教编程,强化学习技术被引入。通过构建包含状态空间、动作空间和奖励函数的强化学习模型,对机械臂示教编程过程进行自适应优化。模型以机械臂关节角度、末端执行器位姿等作为状态输入,以关节运动指令为动作输出,基于任务完成情况和能耗等设定奖励机制。经仿真与实验验证,该优化方法显著提升机械臂示教编程效率,降低操作复杂性,为机械臂在复杂任务场景下的应用提供有效技术支持。
关键词: 强化学习;机械臂;示教编程;自适应优化;工业自动化
Abstract
Teaching programming for robotic arms is widely used in industrial automation, but traditional methods suffer from issues such as poor flexibility and low efficiency. To achieve more efficient and intelligent teaching programming, reinforcement learning technology has been introduced. By constructing a reinforcement learning model that includes the state space, action space, and reward function, the teaching programming process for robotic arms can be optimized adaptively. The model uses the joint angles of the robotic arm and the end effector's position as state inputs, and the joint motion commands as action outputs. A reward mechanism is established based on the task completion and energy consumption. Simulation and experimental results show that this optimization method significantly enhances the efficiency of teaching programming for robotic arms, reduces operational complexity, and provides effective technical support for the application of robotic arms in complex task scenarios.
Key words: Reinforcement learning; Robotic arm; Teaching programming; Adaptive optimization; Industrial automation
参考文献 References
[1] 姜龙云,高永强,王文成,等.带电抢修机器人液压柔性关节多机械臂协同控制[J].液压气动与密封,2024, 44(10): 49-54.
[2] 刘暾东,张馨月,林晨滢,等.基于分段动态运动基元的机械臂轨迹学习与避障方法[J].机器人,2024,46(03):275-283.
[3] 王天瑞,陶平.双机械臂协作最优装配位置及多目标轨迹优化[J].机械传动,2024,48(01):39-45.
[4] 倪浩君,温秀兰,顾云阳,等.基于LabVIEW的机械臂控制与图像处理示教平台设计[J].计量与测试技术,2023, 50(11): 17-19.
[5] 金慧萍,兰天翔,刘腾,等.计算机视觉的桌面型机械臂实验平台设计[J].实验室研究与探索,2023,42(06):46-50.
[6] 贺鑫鑫,雷同飞,王瑞龙.基于CAD的离线仿真编程焊接机器人生产线设计分析[J].机电产品开发与创新,2022, 35(06): 19-22.
[7] 蒋浩,宁芳,张家奇.基于AHP-熵权TOPSIS法的轻载机械臂示教系统交互质量评价方法[J].机电产品开发与创新,2022,35(04):157-160+167.
[8] 杨亮亮,窦岩杰,张晖.基于FreeRTOS和emWin图形库的工业机械臂示教器软件设计[J].软件工程,2022,25(06): 40-44.