期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

International Journal of Mechanical Engineering. 2023; 2: (4) ; 1-5 ; DOI: 10.12208/j.ijme.20230029.

A design for a wetland vegetation restoration robot
一种湿地植被修复机器人设计

作者: 胡俊泽1 *, 余江1, 陈柯良1, 罗世维2, 李雨婷3

1 广东海洋大学机械工程学院 广东湛江

2 广东海洋大学电子与信息工程学院 广东湛江

3 广东海洋大学管理学院 广东湛江

*通讯作者: 胡俊泽,单位: 广东海洋大学机械工程学院 广东湛江;

发布时间: 2023-12-26 总浏览量: 225

摘要

湿地生态修复作为环境保护领域的重大议题,亟待创新技术的支持。本研究应对这一需求,创新设计了一款湿地植被修复机器人。该机器人将机械构造与电控技术相结合,通过优化结构设计,实现了红树林种植的高效自动化。具体而言,机械部分包括履带底盘以适应湿地的复杂地形,配备的钻孔、导苗、覆土等机构协同工作,确保了机器人在湿地中的稳定运作与高效的植被修复能力。电控部分则采用嵌入式系统控制机器人的各部件运动,并通过服务器端对环境数据进行统计和分析,实现人机交互功能。本研究为湿地生态修复工程提供了一种具有前瞻性的技术支持和解决方案,有望为生态环境带来积极的影响。

关键词: 红树林;植树机器人;湿地修复;林业;履带底盘;机电一体化设计

Abstract

Wetland ecological restoration stands as a significant concern in the realm of environmental conservation, calling for innovative technological support. Addressing this demand, this study introduces an innovative design of a wetland vegetation restoration robot. Combining mechanical construction with electronic control technology, the robot achieves efficient automation in mangrove planting through optimized structural design. Specifically, the mechanical components include a tracked chassis to adapt to the intricate terrain of wetlands, equipped with coordinated mechanisms such as drilling, seedling guidance, and soil covering to ensure the robot's stable operation and efficient vegetation restoration capability in wetlands. The electronic control system utilizes embedded systems to control the movement of various components and employs server-side data collection and analysis for environmental statistics, enabling human-machine interaction. This research presents a forward-thinking technological support and solution for wetland ecological restoration projects, potentially yielding positive impacts on the ecological environment.

Key words: Mangroves; Tree-planting robot; Wetland restoration; Forestry; Tracked chassis; Mechatronic integrated design

参考文献 References

[1] 沈小雪, 关淳雅, 王茜, 等. 红树林生态开发现状与对策研究[J]. 中国环境科学, 2020, 40(9): 295–307 

[2] 杨盛昌, 陆文勋, 邹 祯, 等. 中国红树林湿地: 分布、种类组成及其保护[j]. 亚热带植物科学, 2017,46(4): 301-310 

[3] 李瑞利, 杨芳, 王辉, 王文卿. 红树林保护与修复标准发展现状及对策[j].北京大学学报,2022(9):916 - 928

[4] Worthington T A , Ermgassen P , Friess D A , et al. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation[j]. Scientific Reports, 2020, 10(1): 14652 

[5] Wang W, Fu H, Lee S Y, et al. Can strict protection stop the decline of mangrove ecosystems in China? From rapid destruction to rampant degradation[j]. Forests, 2020, 11(1): 55 

[6] Feller I C, Friess D A, Krauss K W, et al. The state of the world’s mangroves in the 21st century under climate change[j]. Hydrobiologia, 2017, 803: 1–12 

[7] Ishigure, Yasuhiko, Hideki Kachi, Yuji Mori and Haruhisa Kawasaki. PRUNING MACHINE WITH A MECHANISM FOR PREVENTING BRANCH BITE. (2010). 

[8] 广西大学. 红树林种植泥模制作机:CN201410640119.5 [P]. 2015-02-18.

[9] 辽宁科技大学. 全自动植树机器人:CN202120121999.0 [P]. 2021-10-15.

[10] 重庆交通大学. 植树机器人:CN202221546436.7[P]. 2022-10-04.

[11]李思哲. 一种一体化植树机器人:CN202210241413.3[P]. 2022-06-07.

[12] 北方工业大学. 一种用于沙漠植树的机器人: CN202210016314.5[P]. 2022-04-01.

[13] 李永伟. 一种红树林植物幼苗种植培育设备: CN202110165128.3[P]. 2021-06-18.

[14] 广东湛江红树林国家级自然保护区管理局. 一种用于红树林种子批量种植的定位装置:CN201921590248.2[P]. 2020-05-22.

[15] 杭州园林设计院股份有限公司. 一种海潮中供红树林快速生长的装置:CN201821603459.0[P]. 2019-06-21.

引用本文

胡俊泽, 余江, 陈柯良, 罗世维, 李雨婷, 一种湿地植被修复机器人设计[J]. 国际机械工程, 2023; 2: (4) : 1-5.