Open Access Article
International Journal of Mechanical Engineering. 2023; 2: (1) ; 23-26 ; DOI: 10.12208/j.ijme.20230006.
AGV charging scheduling method based on rolling time domain optimization strategyand deep Q learning algorithm
基于滚动时域优化策略和深度Q学习算法的AGV充电调度方法
作者:
王志杰 *
杭叉集团股份有限公司 浙江杭州
*通讯作者:
王志杰,单位:杭叉集团股份有限公司 浙江杭州;
发布时间: 2023-02-28 总浏览量: 470
PDF 全文下载
引用本文
万方数据(WANFANG DATA)
摘要
设计基于滚动时域优化策略和深度Q学习算法的AGV充电调度方法。首先,在滚动时域优化策略下,确定了AGV的充电状态,控制AGV的充电负荷。其次,建立AGV系统当前状态的深度Q学习算法模型,获取AGV执行相应动作的Q值。最后,计算AGV充电调度功耗,实现AGV的高效充电调度。
关键词: Q学习算法;AGV;调度方法
Abstract
An AGV charging scheduling method based on rolling time domain optimization strategy and deep Q learning algorithm was designed. Firstly, under the rolling time domain optimization strategy, the charging state of AGV is determined and the charging load of AGV is controlled. Secondly, the deep Q learning algorithm model of the current state of the AGV system is established to obtain the Q value of the AGV executing corresponding actions. Finally, the power consumption of AGV charging scheduling is calculated to achieve efficient charging scheduling of AGV.Key words: rolling time domain optimization strategy; Deep Q learning algorithm; AGV. Charge scheduling method
Key words: Q learning algorithm; AGV. Scheduling method
参考文献 References
[1] 刘岩,邓彬,王瑾,等.基于多目标优化模型的电动汽车充电调度策略[J].沈阳工业大学学报,2022,44(02):127-132.
[2] 冯小,张传林,崔承刚,等.基于Stackelberg博弈的孤岛式光储充电站调度优化[J].电网技术,2022,46(10):3989-4001.
[3] 张彬桥,李成,李振兴,等.基于交通信息和配电网全成本电价的电动汽车充电负荷调度方法[J].智慧电力,2021,49(07):52-57.
[4] 季娜, 蔡红霞, 钱晖. 基于滚动时域优化策略的玻璃深加工车间调度研究[J]. 工业控制计算机, 2017, 30(3):3.
[5] 丁一陈婷. 基于滚动时域优化策略的多载AGV充电调度[J]. 中国航海, 2020, 43(2):80-85.
引用本文
王志杰, 基于滚动时域优化策略和深度Q学习算法的AGV充电调度方法[J]. 国际机械工程, 2023; 2: (1) : 23-26.